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 Summary  
Many simple physical models could be used to demonstrate chaotic behavior in physical 

systems. Numerical models give more control over the experimental conditions and allow one to 
study systems that are closer to ideal conservative systems. Our understanding of the Solar 
system has been revolutionized by the finding that multiple planet systems are subject to chaotic 
dynamical processes. In extreme cases chaos can disrupt some orbital configurations. The Solar 
system provides a plethora of examples of chaotic motion. In order to chaos to occur there must 
be at least two interacting oscillators. In the solar system that interference is supplied by a third 
body. This interference manifests itself as zones of chaotic motion. 
 
 

 
 Dynamical system can behave in a very way even if the governing equations are 
very simple. Loosely speaking, an irregular motion of a deterministic system is termed 
“chaotic behavior”. Chaotic behavior can be characterized by the exponential divergence 
of initially nearby trajectories, or, equivalently, chaotic behavior is characterized by 
sensitive dependence on initial conditions. Chaotic behavior occurs in both conservative 
and dissipative systems. Dynamical systems often show a transition to large-scale 
chaotic behavior, as a parameter is varied the fraction of orbits that are chaotic can 
suddenly change. 
 All of these features can be illustrated with a physical pendulum: chaotic 
behavior, sensitive dependence on initial conditions, regular behavior, transition from 
mostly regular behavior to large-scale chaotic behavior and so on. 
 Many simple physical models could be used to demonstrate chaotic behavior in 
physical systems. Numerical models give more control over the experimental conditions 
and allow one to study systems that are closer to ideal conservative systems. Many 
numerical models are interesting: the double pendulum, the driven pendulum, spin-orbit 
coupling, dynamically coupled oscillators, etc. 
 The Solar system is very nearly a conservative system. We should expect that 
the Solar system and many of its subsystems do exhibit large-scale chaotic behavior. 
The motion of the planets is chaotic with a Lyapunov time of order 4 million years, the 
evolution of the orbit of Mercury is especially irregular. The obliquity of Mars varies 
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between about 10 and 50 on a multimillion year timescale, in a highly irregular manner. 
The chaotic evolution of the obliquity of Mars drastically affect the climate of Mars. 
 Other dynamical phenomena in the solar system involve chaotic behavior such as 
the transport of short-period comets from the Kuiper belt, and the delivery of meteoritic 
material from the asteroid belt. 

It is convenient to choose the pendulum as a basic oscillating system for initial 
investigations. The pendulum is a good model to a wide variety of physical phenomena 
such as charge-density wave transport, quantum-mechanical Josephson systems, Solar 
system dynamics, etc. At present, it is also a widely used basic paradigm for analysis of 
complex, irregular and chaotic oscillations. Biased, we could say that any phenomenon 
that can be observed in the pendulum is of considerable generality. We believe that the 
general problem of excitation of oscillations in different systems under an 
inhomogeneous action of a nonlinear force should be most benefically analyzed on the 
example of the pendulum. 

Chaotic systems have many fascinating properties, and there is a good deal of 
evidence that much of nature is chaotic; the Solar system, for instance. It raises a lot of 
neat and nasty problems about how to understand dynamics from observations, and 
about what it means to make a good mathematical model of something. But it's not the 
whole of dynamics, and in some ways not even the most interesting part. 

The role of the resonances may be illustrated by discussing the dynamics of a 
simple model system - the mathematical pendulum subjected to a constant gravitational 
field. Depending on its energy, there exist two qualitatively different kinds of the motion: 
rotations, for which the pendulum rotates in one direction, so the sign of the angular 
momentum is constant, or librations around a stable fix point, for which the sign of the 
angular momentum changes twice during every period of oscillations. Looking at the 
phase space diagram of the motion, in which any point in the plane (angle θ) generates 
a certain trajectory, (Fig. 1), there exist a curve which separates different kinds of the 
dynamics. It is called separatrix and it consists of two branches connected at the 
unstable fixed point, (θ = π, p = 0). The stable fixed point of the system is located at (θ = 
0, p = 0), in the center of the area bounded by the separatrix. The pendulum pointing 
down, (θ = 0), is stable and perturbed in any direction returns back to its initial position. 
On the other hand, the unstable fixed point corresponds to the pendulum situated 
‘upside down’, so an arbitrarily small perturbation would drive it out of this position. 

The separatrix with the unstable fixed point is crucial for emergence of chaos. If 
there exist (at least) two interacting oscillators in the system, a region of chaotic motion 
emerges in the system. Such an effect may be easily observed  in a simplified model of 
a periodically kicked rotator, defined by the following Hamiltonian 
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The system rotates without friction and gravitational field but is subjected to 
infinitely short periodic perturbations (kicks), which take place at t = 1, 2, 3 ..., in units of 
the kicking period. The dynamics depends on the kicking strength K: for K = 0 there is 
no perturbation and the system performs free rotations, corresponding to horizontal lines 
in the phase space (θ, p). For positive values of the parameter K the dynamics becomes 
more complex: resonances with frequencies commensurate with the kicking period 
emerge around stable periodic orbits – see Fig.2. There exist also unstable periodic 
orbits. In contrast with the case of the pendulum shown in Fig. 1, the infinitely thin 
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separatrices are transformed into layers of chaotic motion of a finite volume, which 
grows with the parameter K. Chaotic layers are formed around every resonance, so they 
do occur at the resonant frequencies. If the kicking strength exceeds a critical value 

 the last horizontal curve (the so-called KAM torus) breaks down, all chaotic 
layers become connected, so the trajectories may diffuse in the phase space acquiring 
arbitrarily high momentum, (the system is kicked and the energy in the system is  not 
conserved). 

97.0≈cK

 
 

Figure 1 Phase space diagram for the pendulum resembles a cylinder. The 
elliptical fixed point (stable) in the center of the plot is surrounded by ellipses 
representing librations, while the hyperbolic fixed point (unstable) is located  at the cut, 
((θ = π,- π), and belongs to the separatrix. Curves encircling horizontaly the cylinder 
represent rotations. 
 

Although there are no forces comparable to periodical kicking in the Solar 
System, as in the above toy model, the interference of the interactions of any body with 
the third body plays the very same role and is responsible for emergence of chaos. 
Furthermore, the destabilizing role of dynamical resonances may be observed by 
studying different issues of the Solar System. The famous Kirkwood gaps in the 
histogram of the density of asteroids plotted as a function of their semi-major axis may 
be explained by the interaction with Jupiter. This fact is apparent if the same data are 
used to produce a histogram as a function of the oscillation period: it shows minima at 
certain frequencies commensurate with the frequency of Jupiter. For instance, due to 
the 3:1 resonant interaction with Jupiter the trajectories of asteroids become unstable, 
which explains the observed minimum of the asteroids density at the frequency three 
times larger than the frequency of the motion of Jupiter. 

The resonant interaction with Neptune influences the dynamics of bodies in the 
Kuiper Belt – the group of objects more distant from the Sun than Neptune, including 
Pluto. On the other hand, the resonant interaction between Saturn and Jupiter could 
contribute to the destabilization of the Solar system. In fact the actual frequencies of the 
both largest planets are close to the 5:2 resonance (Fig.3.). As shown by Michtchenko 
and Ferraz-Mello, a relatively small variation of the parameters determining the orbit of 
Jupiter would increase the role of the resonance, and in consequence would lead to the 
chaotic dynamics of both giant planets (Fig. 4). 
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Figure 2 Phase space diagram for the periodically kicked rotator for kicking 

strength a) K = 0.25; b) K=0.51; c) . Note an increase of the volume of the 
chaotic layer in the phase space. 

cKK >= 02.1

 
Figure 3  Dynamical map of the region around Jupiter: stability of the orbit 

initiated from a given point in the semi-major axis – eccentricity plane plotted in the grey 
scale – light (dark) region denotes regular (chaotic) motion while hatched region 
indicates orbits for which planetary collision occur. Star represents the actual position of 
the Jupiter, close to the 5:2 resonance. 
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Figure 4 Chaotic evolution of Jupiter’s and Saturn’s eccentricity obtained by 

Michtchenko and S. Ferraz-Mello for modified initial conditions corresponding to 5:2 
resonance. 

 
Planets in the Solar system follow nearly Keplerian orbits. The orbit of each 

planet can be thought of as consisting of three nonlinear oscillators, corresponding to 
the three spatial directions. The Kepler problem is unusual in that all three oscillations 
have the same frequency. The orbital elements are chosen to take advantage of this 
degeneracy. The angle l varies on the orbital time scale, whereas the angle ω describing 
radial motion and the angle Ω describing vertical motion, are fixed. In the actual Solar 
system ω and Ω are time-dependent, with frequencies denoted by and , 
respectively. These frequencies are proportional to the mass ratios µ, and are 
consequently much smaller than the mean motion n , the time rate of change of 
the mean anomaly. Here j = 5, 6, 7 and 8 correspond to the radial order of the planets in 
the Solar system. The mean motions n (in units of cycles per day) and the modal 
frequencies of the Jovian planets can by determined by numerical integration of the 
equations of motion. Each  planet’s elements vary with all the frequencies s and g. In the 
case of Jupiter, 
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where ,  e 0.044, e 0.016, and  - constants. 044.055 ≈e 016.056 ≈e 6,5γ

A resonance occurs when two or more oscillators are coupled in such a way that 
a linear combination of their angles σ  undergoes a bounded oscillation, in 
which case σ is said to librate. In the sum defining σ, i denotes the i-th oscillator and the 

’s are (possibly negative) integers. When the oscillators are not resonant, all possible 
combinations of θ ’s increase or decrease in definitely, in which case is said to rotate. 
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The physical significance of a resonance is that energy is exchanged between the 
oscillators over a libration period, which is large compared to the oscillation period of 
any of the oscillators. This prolonged exchange can lead to large changes in the motion 
of the system. The orbit that divides regions of phase space where σ librates from those 
where σ rotates is called the separatrix. 

The chaos in integrations of the outer planets arises from the overlap of the 
components of a three-body mean motion resonance among Jupiter, Saturn, and 
Uranus, with a minor role played by a similar resonance among Saturn, Uranus, and 
Neptune. The theory can by tested by using of numerical integrations. The width ∆  
of the individual resonances are of order , so that small changes in the initial 
conditions of the planets can lead to regular motion. However, the uncertainties in the 
initial conditions are smaller than the width of the individual resonances, so our Solar 
system is almost certainly chaotic. The resonance is extremely weak and hence easily 
disrupted.  

aa /
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Chaos in Hamiltonian systems, of which the motions of the planets are an 
example, arises when the separatrix of one resonance is perturbed by another 
resonance. The extent of the chaos depends on the parameter of stochasticity K, which 
is a function of the separatrix width divided by the distance between resonances. If K is 
small, there is little chaos, but for K > 1 the region in the immediate vicinity of the 
resonances is primarily chaotic. An orbit that at different times both librates and rotates, 
must cross the separatrix, and is therefore chaotic. Another signature of chaos is that 
two initially nearby chaotic orbits diverge exponentially with time. 

Two planets are said to be in a mean motion resonance, when 
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In that case conjunctions between the planets occur at nearly fixed locations in space. 
The designation “mean motion” is a little misleading, because if  there is no 
coupling between the motion (λ, a) of two planets that does not involve a third degree of 
freedom, either the radial (ω, e) or vertical (Ω, i) motion of at least one of the planets. 

1p

There are no two-body mean motion resonances among the planets. However, 
there is a near–mean motion resonance between Jupiter and Saturn; Jupiter makes five 
circuits around the sun in about the same time that Saturn orbits twice. Saturn affects 
the orbit of Jupiter through its gravity, described by the potential 
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where  is the mass of Saturn,  and r  are the position vectors of Jupiter and 
Saturn, and G is the gravitational constant. To see the resonance mathematically, we 
expand  and  in terms of the orbital elements of the two planets up only to the 
lowest order terms: 
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The amplitudes φ  can be easily found in references. Simple considerations 
show that the integers in the argument of the cosine must sum to zero, or 
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and that  must be even. This result shows that the gravitational coupling between 
two bodies on Keplerian orbits always involves either (  or ( , so that at least 
three oscillators are affected. To lowest order in the eccentricities and inclinations, the 
integers k, q, p and r are non-negative and must sum to 3. The strength of the coupling 
is proportional to  or ei , so this resonance is said to be of third order. Hence there 
are 10 frequencies associated with the resonance, four involving only perihelion 
precession rates, such as 

rp +
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        (6) SJSJ ωωλλ &&&& ++− 252
and six involving the precession rates of the nodal lines, including 

SJJSJ Ω+Ω++− &&&&& ωλλ 52        (7) 
The dot over the angles in these expressions denotes a time derivative. Each of 

the 10 members of Eq. 4 is referred to as a resonant term. The reason for this misuse of 
terminology is that, although none of the frequencies associated with these terms in our 
Solar system vanish, they are much smaller than the mean motions of Jupiter and 
Saturn. As a result, the resonant terms have a strong effect on the orbits of the two 
planets. 
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